EFP parameters
How to prepare EFP parameters? There are two ways, either find existing parameters in a Parameter database or Computing parameters.
Parameter database
We have prepared and validated EFP parameters for the following systems:
Learn more detail about these EFP parameters on EFP parameter databases.
Computing parameters
Parameters for any molecule can be computed using MAKEFP run in the GAMESS electronic structure package.
For general information on using GAMESS please refer to the GAMESS manual.
Apart of standard .log and .dat outputs, MAKEFP run creates an additional file with an extension .efp that contains all EFP parameters of your molecule.
An example of GAMESS input file for computing EFP parameters makefp.inp
.
1 $contrl units=angs local=boys runtyp=makefp coord=cart icut=11 $end
2 $system timlim=99999 mwords=200 $end
3 $scf dirscf=.t. soscf=.f. diis=.t. conv=1.0d-06 $end
4 $basis gbasis=n31 ngauss=6 ndfunc=1 diffsp=.t. $end
5 $damp ifttyp(1)=2,0 iftfix(1)=1,1 thrsh=500.0 $end
6 $makefp chtr=.f. disp7=.f. $end
7
8 $data
9comment line
10C1
11N 7 1.08099635 1.08099635 1.08099635
12H 1 1.89264145 1.37035655 0.59462495
13H 1 1.37035655 0.59462495 1.89264145
14H 1 0.59462495 1.89264145 1.37035655
15 $end
16
.efp parameter file
Note
.efp file follows general GAMESS input file conventions:
Group names starting with
$
should start at the second line character.Lines should not exceed 72 characters; use
>
as a continuation sign for longer lines.
An example of .efp file nh3.efp
.
The .efp file has the following structure (see also $FRAGNAME group section in GAMESS manual):
$FRAGNAME
FRAGNAME
section provides user-specified fragment name.The section is mandatory.
FRAGNAME
tag should match the fragment name in LibEFP, GAMESS, Q-Chem inputs. Capitalization is not important.FRAGNAME
tag should match the name of the .efp file. For example,$nh3
fragment should be contained in nh3.efp file.$
in front of theFRAGNAME
tag should be positioned at the second line character.
Commment line
The section is mandatory.
COORDINATES
COORDINATES
section provides coordinates of all atoms and bond-midpoints of the fragment.The section is mandatory.
Each line contains name tag, x, y, z coordinates (in Bohr), atom mass, nuclear charge.
For atoms, the name tag is produced as
A
+two-digit number
+atom name
from the MAKEFP input, e.g., A01N.For bond-midpoints, the name tag is produced as
BO
+second atom number
+first atom number
, e.g., BO21.These name tags are used in
MULTIPOLES
,DIPOLES
,QUADRUPOLES
,OCTUPOLES
,PROJECTION BASIS SET
, andSCREEN
andSCREEN2
sections.The name tags can be changed by user if needed (typically not needed, see below).
GAMESS does not correctly assign name tags in fragments containing more than 99 atoms. Such potentials require atom and bond-midpoint renaming by user.
The section ends with mandatory
STOP
line.
MONOPOLES
MONOPOLES
section contains nuclear and electronic charges of atoms and bond-midpoints of the fragment.Each line contains name tag, electronic charge, nuclear charge.
Name tags should match those in
COORDINATES
section.The section is mandatory in GAMESS input and optional in LibEFP and Q-Chem inputs.
The section can contain less atoms/bond midpoints than
COORDINATES
section.The section ends with mandatory
STOP
line.
DIPOLES
DIPOLES
section contains point dipoles of atoms and bond-midpoints of the fragment.Each line contains name tag and x, y, z values of a point dipole in atomic units.
Name tags should match those in
COORDINATES
section.The section is optional.
The section can contain less atoms/bond midpoints than
COORDINATES
section.Direction of the dipoles is dependent on the fragment orientation as provided by the fragment coordinates.
The section ends with mandatory
STOP
line.
QUADRUPOLES
QUADRUPOLES
section contains point quadrupoles of atoms and bond-midpoints of the fragment.Each line contains name tag and xx, yy, zz, xy, xz, yz components of a quadrupole moment tensor in atomic units. Three other elements (yx, zx, zy) are identical to xy, xz, yz respectively and are omitted.
Name tags should match those in
COORDINATES
section.The section is optional.
The section can contain less atoms/bond midpoints than
COORDINATES
section.Direction of the quadrupole tensor is dependent on the fragment orientation as provided by the fragment coordinates.
The quadrupole moments are given in the Buckingham form, i.e., xx, xy, xz etc components correspond to \(a_x a_x\), \(a_x a_y\), \(a_x a_z\), respectively, where a is a vector describing particle position. Conversion to multipoles in the Cartesian form \(\Theta_{\alpha \beta} = \sum_a e_a (\frac{3}{2}a_{\alpha}a_{\beta}-\frac{1}{2}a^2\delta_{\alpha \beta})\) is conducted within LibEFP or GAMESS codes.
The section ends with mandatory
STOP
line.
OCTUPOLES
OCTUPOLES
section contains point octupoles of atoms and bond-midpoints of the fragment.Each line contains name tag and xxx, yyy, zzz, xxy, xxz, xyy, yyz, xzz, yzz, xyz components of an octupole moment tensor in atomic units. Other elements are determined by symmetry and are omitted.
Name tags should match those in
COORDINATES
section.The section is optional.
The section can contain less atoms/bond midpoints than
COORDINATES
section.Direction of the quadrupole tensor is dependent on the fragment orientation as provided by the fragment coordinates.
The octupole moments are given in the Buckingham form, e.g., xxx corresponds to \(a_x a_x a_x\), where a is a vector describing particle position. Conversion to the Cartesian form is conducted within LibEFP or GAMESS codes.
The section ends with mandatory
STOP
line.
In the example below, $FRAGNAME
($nh3
in this case), COORDINATES
, MONOPOLES
,
DIPOLES
, QUADRUPOLES
, OCTUPOLES
sections are highlighted.
1 RUNTYP=MAKEFP EFFECTIVE FRAGMENT POTENTIAL DATA FOLLOWS...
2 FRAGNAMEEFP GENERATED AT Sat Dec 10 15:44:05 2022
3 $nh3
4EFP DATA FOR FRAGNAME SCFTYP=RHF ... GENERATED WITH BASIS SET=XXX
5 COORDINATES (BOHR)
6A01N 0.0000000000 0.0000000000 -0.1190788329 14.0030700 7.0
7A02H -1.5998498006 0.6978969618 0.5515075313 1.0078250 1.0
8A03H 1.4043213984 1.0365620887 0.5515075313 1.0078250 1.0
9A04H 0.1955284022 -1.7344590505 0.5515075313 1.0078250 1.0
10BO21 -0.7999249003 0.3489484809 0.2162143492 0.0000000 0.0
11BO31 0.7021606992 0.5182810443 0.2162143492 0.0000000 0.0
12BO41 0.0977642011 -0.8672295252 0.2162143492 0.0000000 0.0
13 STOP
14 MONOPOLES
15A01N -7.3243188890 7.00000
16A02H -0.6687876199 1.00000
17A03H -0.6687876199 1.00000
18A04H -0.6687876199 1.00000
19BO21 -0.2231060838 0.00000
20BO31 -0.2231060838 0.00000
21BO41 -0.2231060838 0.00000
22 STOP
23 DIPOLES
24A01N -0.0000000000 0.0000000000 0.2736428914
25A02H -0.0499270117 0.0217794882 0.0113925498
26A03H 0.0438250959 0.0323483164 0.0113925498
27A04H 0.0061019158 -0.0541278045 0.0113925498
28BO21 0.1736798191 -0.0757637486 -0.0038087063
29BO31 -0.1524532405 -0.1125292612 -0.0038087063
30BO41 -0.0212265786 0.1882930098 -0.0038087063
31 STOP
32 QUADRUPOLES
33A01N -4.3696813753 -4.3696813753 -5.8536961016 -0.0000000000 >
34 0.0000000000 -0.0000000000
35A02H -0.3443573873 -0.3486092962 -0.3462279849 -0.0022907014 >
36 -0.0051656323 0.0022533859
37A03H -0.3455625134 -0.3474041701 -0.3462279849 0.0029864812 >
38 0.0045343056 0.0033468758
39A04H -0.3495301245 -0.3434365589 -0.3462279849 -0.0006957799 >
40 0.0006313267 -0.0056002617
41BO21 -0.0599289578 -0.0799073136 -0.0952457439 -0.0107632709 >
42 -0.0063071060 0.0027513271
43BO31 -0.0655914587 -0.0742448128 -0.0952457439 0.0140325173 >
44 0.0055362722 0.0040864505
45BO41 -0.0842339906 -0.0556022808 -0.0952457439 -0.0032692464 >
46 0.0007708338 -0.0068377776
47 STOP
48 OCTUPOLES
49A01N 0.023087929 0.065944727 0.426940863 -0.065944727 >
50 0.117018335 -0.023087929 0.117018335 0.000000000 >
51 -0.000000000 0.000000000
52A02H -0.063695493 0.031880814 0.012702640 0.005890173 >
53 -0.001214362 -0.022890221 0.003577870 -0.022180921 >
54 0.009675907 0.002581799
55A03H 0.058246411 0.045627524 0.012702640 0.010472410 >
56 0.000143909 0.017757080 0.002219599 0.019470041 >
57 0.014371288 -0.003365997
58A04H 0.009180459 -0.066850618 0.012702640 -0.027020304 >
59 0.004615716 0.001401763 -0.002252207 0.002710879 >
60 -0.024047194 0.000784198
61BO21 0.599193840 -0.263116162 0.032938337 -0.085702140 >
62 0.012148985 0.200432638 0.014924642 0.197106829 >
63 -0.085983232 0.001495376
64BO31 -0.526950080 -0.390068205 0.032938337 -0.128019487 >
65 0.012935695 -0.174948669 0.014137933 -0.173017078 >
66 -0.127707905 -0.001949582
67BO41 -0.073821815 0.648677060 0.032938337 0.218228934 >
68 0.015525761 -0.023905914 0.011547866 -0.024089751 >
69 0.213691137 0.000454207
70 STOP
SCREEN
and SCREEN2
SCREEN
andSCREEN2
sections provide screening parameters to account for charge-penetration energy between QM and EFP regions (SCREEN
) and between EFP fragments (SCREEN2
).Both sections are optional.
Each line contains name tag and \(\alpha\) and \(\beta\) parameters that effectively screen EFP electronic charges.
For QM-EFP interactions (
SCREEN
): \(q_A \rightarrow _A(1-\alpha \exp(-\beta (r_A-r_e)^2))\), where \(r_e\) is position of an electron.For EFP-EFP interactions (
SCREEN2
): \(q_A \rightarrow _A(1-\alpha \exp(-\beta (r_A-r_B)))\), where \(r_B\) is position of another charge.\(\alpha\) parameters in both cases are typically set to 1.
SCREEN
andSCREEN2
sections are typically found in the very end of .efp file, even though exact placement of sections can be varied by user.Name tags should match those in
COORDINATES
section.Sections can contain less atoms/bond midpoints than
COORDINATES
section.Each section ends with mandatory
STOP
line.
1SCREEN2 (FROM VDWSCL= 0.700)
2 A01N 1.000000000 1.624352412
3 A02H 1.000000000 2.785518573
4 A03H 1.000000000 3.110587808
5 A04H 1.000000000 3.098409474
6 BO21 1.000000000 6.053889393
7 BO31 1.000000000 10.000000000
8 BO41 1.000000000 10.000000000
9STOP
10SCREEN (FROM VDWSCL= 0.700)
11 A01N 1.000000000 0.760652041
12 A02H 1.000000000 1.018858487
13 A03H 1.000000000 1.057200085
14 A04H 1.000000000 1.054696149
15 BO21 1.000000000 10.088209433
16 BO31 1.000000000 10.000000000
17 BO41 1.000000000 10.000000000
18STOP
19 $END
POLARIZABLE POINTS
POLARIZABLE POINTS
section provides coordinates and values of anisotropic polarizability tensors for computing polarization energy.The section is optional.
The group contains a set of two-line entries each containing:
first line: polarizable point tag, x, y, z coordinates of the point (in Bohr)
second line: XX, YY, ZZ, XY, XZ, YZ, YX, ZX, ZY elements of the polarizability tensor
The section ends with mandatory
STOP
line.Coordinates of the polarizability points and orientations of polarizability tensors are given with respect to the fragment coordinate frame as given in COORDINATES.
Typically coordinates of polarizability points are centroids of the localized molecular orbitals, but other choices (e.g., atom positions) are possible.
DYNAMIC POLARIZABLE POINTS
DYNAMIC POLARIZABLE POINTS
section provides coordinates and values of anisotropic dynamic polarizability tensors for computing dispersion energy.The section is optional.
The group contains twelve entries each similar to the POLARIZABLE POINTS section, i.e., each containing multiple sets of two-line entries:
first line: polarizable point tag, x, y, z coordinates of the point (in Bohr)
second line: XX, YY, ZZ, XY, XZ, YZ, YX, ZX, ZY elements of the dynamic polarizability tensor
Each of these 12 sets contains time-dependent (dynamic) polarizabilities computed at given values of imaginary frequencies. Coordinates of polarizability points remain the same between all twelve sets.
The section ends with mandatory
STOP
line.Coordinates of the dynamic polarizability points and orientations of tensors are given with respect to the fragment coordinate frame as given in COORDINATES.
Typically coordinates of dynamic polarizability points are centroids of the localized molecular orbitals, but other choices (e.g., atom positions) are possible.
Only first three elements (XX, YY, ZZ) of the tensors are used in calculation of the \(\frac{C_6}{R^6}\) dispersion energy (the one implemented in LibEFP).
1 POLARIZABLE POINTS
2CT1 -0.9650292512 0.4209713827 0.3161330289
3 3.5468464622 1.3266142599 1.1332988876 -1.1962568619 >
4 -1.3009405693 0.5675525723 -1.1964374523 -1.2419548605 >
5 0.5417403247
6CT2 0.1179427138 -1.0462255382 0.3161330290
7 0.8455408832 4.0280072355 1.1332988881 -0.3633659575 >
8 0.1590054944 -1.4102796405 -0.3633872275 0.1518165472 >
9 -1.3464346223
10CT3 0.8470865372 0.6252541554 0.3161330294
11 2.9174983534 1.9558680889 1.1332988894 1.5595878449 >
12 1.1419350762 0.8427270687 1.5595626025 1.0901383149 >
13 0.8046942983
14CT4 0.0000000002 0.0000000001 -0.7882271310
15 1.7193643981 1.7192501115 5.9821499943 0.0000068731 >
16 -0.0000000013 -0.0000000005 0.0001243872 -0.0000000017 >
17 -0.0000000007
18 STOP
19 DYNAMIC POLARIZABLE POINTS
20CT 1 -0.9650292512 0.4209713827 0.3161330289 -- FOR W= 0.002792I A.U.
21 3.5468331653 1.3264064658 1.1333208209 -1.1962472920 >
22 -1.3009786346 0.5675214234 -1.1962472920 -1.2420029348 >
23 0.5417946573
24CT 2 0.1179427138 -1.0462255382 0.3161330290
25 0.8455325960 4.0277070350 1.1333208213 -0.3633493178 >
26 0.1590013479 -1.4104412593 -0.3633493178 0.1517935310 >
27 -1.3465034222
28CT 3 0.8470865372 0.6252541554 0.3161330294
29 2.9174936840 1.9557459444 1.1333208227 1.5595966112 >
30 1.1419772880 0.8429198365 1.5595966112 1.0902094055 >
31 0.8047087656
32CT 4 0.0000000002 0.0000000001 -0.7882271310
33 1.7193402431 1.7193402433 5.9814558166 -0.0000000014 >
34 -0.0000000013 -0.0000000005 -0.0000000014 -0.0000000017 >
35 -0.0000000007
36CT 1 -0.9650292512 0.4209713827 0.3161330289 -- FOR W= 0.015107I A.U.
37 3.5447871587 1.3259797791 1.1325371132 -1.1953748890 >
38 -1.3000577587 0.5671197128 -1.1953748890 -1.2404763132 >
39 0.5411287044
40CT 2 0.1179427138 -1.0462255382 0.3161330290
41 0.8454566025 4.0253103351 1.1325371136 -0.3630843332 >
42 0.1588888015 -1.4094429021 -0.3630843332 0.1516069523 >
43 -1.3448483526
44CT 3 0.8470865372 0.6252541554 0.3161330294
45 2.9159066440 1.9548602909 1.1325371150 1.5584592236 >
46 1.1411689585 0.8423231898 1.5584592236 1.0888693625 >
47 0.8037196489
48CT 4 0.0000000002 0.0000000001 -0.7882271310
49 1.7180716243 1.7180716245 5.9699691089 -0.0000000014 >
50 -0.0000000013 -0.0000000005 -0.0000000014 -0.0000000017 >
51 -0.0000000007
52CT 1 -0.9650292512 0.4209713827 0.3161330289 -- FOR W= 0.039002I A.U.
53 3.5328436557 1.3234825327 1.1279950490 -1.1902857505 >
54 -1.2946847903 0.5647758814 -1.1902857505 -1.2316469988 >
55 0.5372771230
56CT 2 0.1179427138 -1.0462255382 0.3161330290
57 0.8450051152 4.0113210731 1.1279950494 -0.3615385534 >
58 0.1582321349 -1.4036178593 -0.3615385534 0.1505278625 >
59 -1.3352761514
60CT 3 0.8470865372 0.6252541554 0.3161330294
61 2.9066405104 1.9496856753 1.1279950508 1.5518243053 >
62 1.1364526567 0.8388419784 1.5518243053 1.0811191380 >
63 0.7979990291
64CT 4 0.0000000002 0.0000000001 -0.7882271310
65 1.7106813261 1.7106813262 5.9037030573 -0.0000000014 >
66 -0.0000000013 -0.0000000005 -0.0000000014 -0.0000000017 >
67 -0.0000000007
PROJECTION BASIS SET
PROJECTION BASIS SET
section contains information on the basis set used in calculation of the exchange-repulsion energy and overlap-based electrostatic and dispersion dampings.The section is optional.
Basis set information for all atoms of the fragment is given, separated by empty lines.
The first line for each atom entry contains atom name tag that should match one from the COORDINATES section, x, y, z coordinates of the atom (in Bohr), and a number corresponding to the atom nuclear charge minus the number of electrons in core orbitals. For example, 5 = 7-2 for N, 4 = 6-2 for C, 1 = 1-0 for H etc. The following information on basis functions is given in the GAMESS basis set format.
The section ends with mandatory
STOP
line.
1 PROJECTION BASIS SET
2A01N 0.0000000000 0.0000000000 -0.1190788329 5.0
3 S 6
4 1 4173.5114600000 0.67899792
5 2 627.4579110000 1.25043140
6 3 142.9020930000 2.02035647
7 4 40.2343293000 2.64421231
8 5 12.8202129000 2.26500482
9 6 4.3904370100 0.77918790
10 L 3
11 7 11.6263618604 -0.51587465 2.06805186
12 8 2.7162798073 -0.25502307 1.61001139
13 9 0.7722183966 0.67273451 0.76449036
14 L 1
15 10 0.2120314975 0.22269495 0.20508815
16 L 1
17 11 0.0639000000 0.09058071 0.04579480
18 D 1
19 12 0.8000000000 1.11382493
20
21A02H -1.5998498006 0.6978969618 0.5515075313 1.0
22 S 3
23 13 18.7311369600 0.21493545
24 14 2.8253943648 0.36457120
25 15 0.6401216923 0.41505143
26 S 1
27 16 0.1612777588 0.18138065
28
29A03H 1.4043213984 1.0365620887 0.5515075313 1.0
30 S 3
31 17 18.7311369600 0.21493545
32 18 2.8253943648 0.36457120
33 19 0.6401216923 0.41505143
34 S 1
35 20 0.1612777588 0.18138065
36
37A04H 0.1955284022 -1.7344590505 0.5515075313 1.0
38 S 3
39 21 18.7311369600 0.21493545
40 22 2.8253943648 0.36457120
41 23 0.6401216923 0.41505143
42 S 1
43 24 0.1612777588 0.18138065
44
45 STOP
MULTIPLICITY
MULTIPLICITY
section provides multiplicity of the fragment used in computing exchange-repulsion energy and overlap-based electrostatic and dispersion dampings.The section is optional.
LibEFP works only with multiplicity 1 (closed shell fragments).
The section ends with mandatory
STOP
line.
PROJECTION WAVEFUNCTION
PROJECTION WAVEFUNCTION
section provides localized wave function of the fragment used in computing exchange-repulsion energy and overlap-based electrostatic and dispersion dampings.The section is optional.
Format: first line contains PROJECTION WAVEFUNCTION keyword, \(N_{loc}\)- number of the localized occupied orbitals (core orbitals are excluded), \(N_{basis}\) size of the basis set. The following lines provide orbital coefficients for each orbital. Each line contains orbital number, line number for the given orbital, five orbital coefficients not separated by comma. These entries are format sensitive!
The number of orbital entries should match \(N_{loc}\) (the first number in the first line).
The number of orbital coefficients for each orbital should match \(N_{basis}\) (the second number in the first line).
Note: the section does not require
STOP
line.
FOCK MATRIX ELEMENTS
FOCK MATRIX ELEMENTS
section provides elements of the Fock matrix of the fragment in the localized basis. It is used in computing exchange-repulsion energy and overlap-based electrostatic and dispersion dampings.The section is optional.
The Fock matrix is given in the lower triangular form, i.e., the matrix \(\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}\) is provided as \(a_{11}\), \(a_{21}\), \(a_{22}\), \(a_{31}\), \(a_{32}\), \(a_{33}\).
The size of the matrix is \(N_{loc} \times N_{loc}\), i.e. \(N_{loc} * (N_{loc}-1)\) values is expected.
Note: the section does not require
STOP
line.
LMO CENTROIDS
LMO CENTROIDS
section provides coordinates of the localized molecular orbital centroids. Those are used in computing exchange-repulsion energy and overlap-based electrostatic and dispersion dampings.The section is optional.
Each line contains a centroid tag name and x, y, z coordinates (in Bohr) of the centroid, with respect to the fragment reference frame as given in COORDINATES section.
The number of centroids should match \(N_{loc}\) (the number of the localized occupied orbitals) in PROJECTION WAVEFUNCTION section.
The section ends with mandatory
STOP
line.
1 MULTIPLICITY 1
2 STOP
3 PROJECTION WAVEFUNCTION 4 25
4 1 1-9.71883850E-02 1.96133060E-01-3.58609534E-01 1.56435001E-01 1.53489937E-01
5 1 2 2.06117088E-01-2.07887556E-01 9.06860717E-02 1.17293141E-01 3.01362608E-02
6 1 3-3.44148857E-03 1.50126869E-03 2.40265023E-02 1.77629851E-02-6.23523419E-03
7 1 4 4.04858946E-03-1.49290754E-02-2.86240183E-02 1.24865568E-02 3.16057922E-01
8 1 5 1.12446012E-01-2.46559058E-02-6.91992834E-02-2.46559059E-02-6.91992835E-02
9 2 1-9.71883850E-02 1.96133060E-01 4.38280823E-02-3.88782467E-01 1.53489937E-01
10 2 2 2.06117088E-01 2.54073359E-02-2.25378940E-01 1.17293141E-01 3.01362609E-02
11 2 3 4.20607457E-04-3.73105088E-03 2.40265023E-02-1.14324859E-02 2.29602368E-02
12 2 4 4.04858947E-03-4.53457194E-03 3.49833373E-03-3.10324054E-02-2.46559057E-02
13 2 5-6.91992834E-02-2.46559060E-02-6.91992835E-02 3.16057922E-01 1.12446012E-01
14 3 1 9.71883850E-02-1.96133060E-01-3.14781452E-01-2.32347466E-01-1.53489937E-01
15 3 2-2.06117088E-01-1.82480220E-01-1.34692869E-01-1.17293141E-01-3.01362609E-02
16 3 3-3.02088111E-03-2.22978218E-03-2.40265024E-02-1.09611272E-02-5.66623710E-04
17 3 4-4.04858949E-03-1.94636473E-02-2.51256845E-02-1.85458486E-02 2.46559058E-02
18 3 5 6.91992835E-02-3.16057922E-01-1.12446012E-01 2.46559056E-02 6.91992834E-02
19 4 1-1.20039612E-01 2.75355932E-01 2.14576633E-10 8.82155725E-11-4.95490080E-01
20 4 2 3.25364386E-01 1.24391037E-10 5.11389632E-11-4.15288097E-01-1.58914633E-02
21 4 3 2.05923981E-12 8.46583416E-13-9.61820864E-02 1.74055845E-02 1.74055845E-02
22 4 4-2.53742792E-02 1.20606819E-11 1.71273903E-11 7.04131910E-12-1.44489768E-02
23 4 5-8.28234255E-03-1.44489766E-02-8.28234243E-03-1.44489767E-02-8.28234252E-03
24 FOCK MATRIX ELEMENTS
25 -0.7883193745 -0.1439922994 -0.7883193745 0.1439922995 >
26 0.1439922995 -0.7883193746 -0.1315378524 -0.1315378524 >
27 0.1315378526 -0.5045574870
28 LMO CENTROIDS
29CT1 -0.9650292512 0.4209713827 0.3161330289
30CT2 0.1179427138 -1.0462255382 0.3161330290
31CT3 0.8470865372 0.6252541554 0.3161330294
32CT4 0.0000000002 0.0000000001 -0.7882271310
33 STOP
Additional .efp parameters
POLAB
POLAB
is a keyword specifying a short-range polarization damping parameter for the fragment.The section is optional.
This section is not included in the .efp as prepared by the MAKEFP run and should be added manually if needed.
The section format is:
POLAB value
, followed by the mandatorySTOP
line, wherevalue
is the user-specified value of the parameter.Default value is 0.6.
Some wisdom on a choice of the POLAB parameter:
polab = 0.6 (default) - works well for the majority of neutral solvents;
polab = 0.3 might improve stability of BioEFP calculations in proteins, especially relevant for charged amino acids;
polab = 0.1 was shown to work safely for anions like F-, Cl-, etc;
polab = 0.1 might be useful for large aromatics like porphyrins and chlorophylls (their polarizabilities are huge and orbital localization schemes often struggle, resulting in very large ~100 a.u. polarizabilities on some sites);
polab = 0.03 for Li+, Na+ and Mg2+.
MM_CHARGE
MM_CHARGE
provides atomic charges, typically matching partial charges in classical MM calculations.Each line contains name tag and partial charge.
Name tags should match those in
COORDINATES
section.The section is optional.
This section is not included in the .efp as prepared by the MAKEFP run and should be added manually if needed.
The section ends with mandatory
STOP
line.
MM_LJ
MM_LJ
provides atomic Lennard-Jones parameters as in classical MM calculations.Each line contains name tag, \(\sigma\), and \(\epsilon\).
Name tags should match those in
COORDINATES
section.The section is optional.
This section is not included in the .efp as prepared by the MAKEFP run and should be added manually if needed.
The section ends with mandatory
STOP
line.GROMACS units are assumed: \(\sigma\) in nm, \(\epsilon\) in kJ/mol.
Currently, the Lennard-Jones energy is computed as
using the following comboination rules
1MM_CHARGE
2A01O -0.834
3A02H 0.417
4A03H 0.417
5STOP
6MM_LJ
7A01O 0.315057422683 0.6363864
8A02H 0.040001352445 0.1924640
9A03H 0.040001352445 0.1924640
10STOP